首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86901篇
  免费   11624篇
  国内免费   6531篇
化学   46685篇
晶体学   632篇
力学   4131篇
综合类   1339篇
数学   17299篇
物理学   34970篇
  2023年   738篇
  2022年   1416篇
  2021年   2570篇
  2020年   2436篇
  2019年   2384篇
  2018年   2076篇
  2017年   2520篇
  2016年   3375篇
  2015年   3275篇
  2014年   4135篇
  2013年   6751篇
  2012年   4795篇
  2011年   5348篇
  2010年   4721篇
  2009年   5763篇
  2008年   5859篇
  2007年   6267篇
  2006年   5270篇
  2005年   4068篇
  2004年   3644篇
  2003年   3271篇
  2002年   2885篇
  2001年   2549篇
  2000年   1971篇
  1999年   1761篇
  1998年   1562篇
  1997年   1352篇
  1996年   1250篇
  1995年   1195篇
  1994年   980篇
  1993年   964篇
  1992年   845篇
  1991年   665篇
  1990年   501篇
  1989年   377篇
  1988年   499篇
  1987年   349篇
  1986年   334篇
  1985年   433篇
  1984年   334篇
  1983年   186篇
  1982年   366篇
  1981年   552篇
  1980年   483篇
  1979年   495篇
  1978年   397篇
  1977年   292篇
  1976年   253篇
  1974年   87篇
  1973年   172篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
The dissolution behavior of carbon steel in ammonium chloride (NH4Cl) solution containing sodium thiosulfate (Na2S2O3) of various concentrations (0.01 and 0.1 M) was investigated using electrochemical impedance spectroscopy (EIS) and other nonelectrochemical techniques. The weight loss and polarization measurements indicate a significant increase in the NH4Cl corrosion rate of carbon steel on addition of Na2S2O3. The EIS measurements exhibited two capacitive loops at multiple direct current (dc) potentials for both the concentrations. Electrical equivalent circuit (EEC) and reaction mechanism analysis (RMA) were employed to analyze the impedance data. A four-step mechanism with two intermediate adsorbate species of same charge was proposed to explain the dissolution behavior of carbon steel in the given system. The surface coverage values enumerated that the surface was entirely covered with adsorbed species unlike in the pure NH4Cl system. Charge transfer resistance and polarization resistance values estimated from RMA parameters indicate the increase in a dissolution rate with dc potential. The surface morphology was inspected via field emission scanning electron microscopy, and the corrosion products including surface state of carbon steel electrode were analyzed using energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy.  相似文献   
102.
Molecular rotors are a class of fluorophores that enable convenient imaging of viscosity inside microscopic samples such as lipid vesicles or live cells. Currently, rotor compounds containing a boron-dipyrromethene (BODIPY) group are among the most promising viscosity probes. In this work, it is reported that by adding heavy-electron-withdrawing −NO2 groups, the viscosity-sensitive range of a BODIPY probe is drastically expanded from 5–1500 cP to 0.5–50 000 cP. The improved range makes it, to our knowledge, the first hydrophobic molecular rotor applicable not only at moderate viscosities but also for viscosity measurements in highly viscous samples. Furthermore, the photophysical mechanism of the BODIPY molecular rotors under study has been determined by performing quantum chemical calculations and transient absorption experiments. This mechanism demonstrates how BODIPY molecular rotors work in general, why the −NO2 group causes such an improvement, and why BODIPY molecular rotors suffer from undesirable sensitivity to temperature. Overall, besides reporting a viscosity probe with remarkable properties, the results obtained expand the general understanding of molecular rotors and show a way to use the knowledge of their molecular action mechanism for augmenting their viscosity-sensing properties.  相似文献   
103.
An integrated shape morphing and topology optimization approach based on the deformable simplicial complex methodology is developed to address Stokes and Navier‐Stokes flow problems. The optimized geometry is interpreted by a set of piecewise linear curves embedded in a well‐formed triangular mesh, resulting in a physically well‐defined interface between fluid and impermeable regions. The shape evolution is realized by deforming the curves while maintaining a high‐quality mesh through adaption of the mesh near the structural boundary, rather than performing global remeshing. Topological changes are allowed through hole merging or splitting of islands. The finite element discretization used provides smooth and stable optimized boundaries for simple energy dissipation objectives. However, for more advanced problems, boundary oscillations are observed due to conflicts between the objective function and the minimum length scale imposed by the meshing algorithm. A surface regularization scheme is introduced to circumvent this issue, which is specifically tailored for the deformable simplicial complex approach. In contrast to other filter‐based regularization techniques, the scheme does not introduce additional control variables, and at the same time, it is based on a rigorous sensitivity analysis. Several numerical examples are presented to demonstrate the applicability of the approach.  相似文献   
104.
105.
Consider an elastic thin three-dimensional body made of a periodic distribution of elastic inclusions. When both the thickness of the beam and the size of the heterogeneities tend simultaneously to zero the authors obtain three different one-dimensional models of beam depending upon the limit of the ratio of these two small parameters.  相似文献   
106.
In this paper, the finite element method with new spherical Hankel shape functions is developed for simulating 2‐dimensional incompressible viscous fluid problems. In order to approximate the hydrodynamic variables, the finite element method based on new shape functions is reformulated. The governing equations are the Navier‐Stokes equations solved by the finite element method with the classic Lagrange and spherical Hankel shape functions. The new shape functions are derived using the first and second kinds of Bessel functions. In addition, these functions have properties such as piecewise continuity. For the enrichment of Hankel radial basis functions, polynomial terms are added to the functional expansion that only employs spherical Hankel radial basis functions in the approximation. In addition, the participation of spherical Bessel function fields has enhanced the robustness and efficiency of the interpolation. To demonstrate the efficiency and accuracy of these shape functions, 4 benchmark tests in fluid mechanics are considered. Then, the present model results are compared with the classic finite element results and available analytical and numerical solutions. The results show that the proposed method, even with less number of elements, is more accurate than the classic finite element method.  相似文献   
107.
108.
This paper is our attempt, on the basis of physical theory, to bring more clarification on the question “What is life?” formulated in the well-known book of Schrödinger in 1944. According to Schrödinger, the main distinguishing feature of a biosystem’s functioning is the ability to preserve its order structure or, in mathematical terms, to prevent increasing of entropy. However, Schrödinger’s analysis shows that the classical theory is not able to adequately describe the order-stability in a biosystem. Schrödinger also appealed to the ambiguous notion of negative entropy. We apply quantum theory. As is well-known, behaviour of the quantum von Neumann entropy crucially differs from behaviour of classical entropy. We consider a complex biosystem S composed of many subsystems, say proteins, cells, or neural networks in the brain, that is, S=(Si). We study the following problem: whether the compound system S can maintain “global order” in the situation of an increase of local disorder and if S can preserve the low entropy while other Si increase their entropies (may be essentially). We show that the entropy of a system as a whole can be constant, while the entropies of its parts rising. For classical systems, this is impossible, because the entropy of S cannot be less than the entropy of its subsystem Si. And if a subsystems’s entropy increases, then a system’s entropy should also increase, by at least the same amount. However, within the quantum information theory, the answer is positive. The significant role is played by the entanglement of a subsystems’ states. In the absence of entanglement, the increasing of local disorder implies an increasing disorder in the compound system S (as in the classical regime). In this note, we proceed within a quantum-like approach to mathematical modeling of information processing by biosystems—respecting the quantum laws need not be based on genuine quantum physical processes in biosystems. Recently, such modeling found numerous applications in molecular biology, genetics, evolution theory, cognition, psychology and decision making. The quantum-like model of order stability can be applied not only in biology, but also in social science and artificial intelligence.  相似文献   
109.
利用低温水热法在p-GaN薄膜上生长了铟(In)和镓(Ga)共掺杂的ZnO纳米棒。X射线衍射(XRD)、X射线光电子能谱(XPS)和X射线能量色谱仪(EDS)结果表明,In和Ga已固溶到ZnO晶格中。扫描电子显微镜(SEM)结果表明, ZnO纳米棒具有良好的c轴取向性,随着In和Ga共掺杂浓度的增加,纳米棒的直径减小,密度增加。XRD结果表明,In和Ga共掺杂引起ZnO晶格常数增大,导致(002)衍射峰向低角度方向偏移。同时,ZnO的光学性质受到In和Ga共掺杂的影响。与纯ZnO相比, 共掺杂ZnO纳米棒的紫外发射峰都出现轻微红移,这是表面共振和带隙重整效应综合作用的结果。I-V特性曲线表明,随着In和Ga共掺杂浓度的增加,n-ZnO纳米棒/p-GaN异质结具有更好的导电性。  相似文献   
110.
The rate of convergence of approximate solutions via penalization for free boundary problems are concerned. A key observation is to obtain global bounds of penalized terms which give necessary estimates on integrations by the nonlinear adjoint method by L.C. Evans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号